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Generalized Sturmians applied to atoms in strong external
fields
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The generalized Sturmian approach to quantum mechanical many-body problems is de-
scribed. The method allows correlated solutions to the many-particle Schrödinger equation
to be obtained directly, without the use of the self-consistent-field approximation. As an
illustrative example, spectra and polarizabilities are calculated for atoms and ions in the
2-electron and 3-electron isoelectronic series under the influence of very strong external
electric fields.

1. Introduction

The method of generalized Sturmians [2–19,24–28] offers a fresh approach to the
many-particle Schrödinger equation: one avoids the self-consistent-field approximation
and obtains directly a correlated solution to the many-particle problem. In this method,
one constructs an N -particle basis set whose members are solutions to the Schrödinger
equation with a weighted “basis potential”, V0(x):[

−
N∑
j=1

1
2mj
∇2
j + βνV0(x)−E

]
φν (x) = 0, (1)

where the weighting factors, βν , are chosen in such a way that all the members of
the set correspond to the same energy, E. The members of the basis set can then be
shown to obey a potential-weighted orthonormality relation in configuration space:∫

dx φ∗ν′(x)V0(x)φν (x) = δν′,ν
2E
βν

, (2)

while in momentum space, the weighted orthonormality relation becomes∫
dp

(
p2

0 + p2

2p2
0

)
φt∗ν′(p)φtν(p) = δν′,ν , (3)

where

p2
0 ≡ −2E. (4)
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Having constructed such a basis set, we can use it to solve the many-particle
Schrödinger equation [

−
N∑
j=1

1
2mj
∇2
j + V (x)−E

]
ψ(x) = 0. (5)

Expanding ψ(x) in terms of the generalized Sturmian basis, we have

N∑
ν=1

[
−

N∑
j=1

1
2mj
∇2
j + V (x)−E

]
φν (x)Bν = 0. (6)

Since all the members of the basis set obey equation (1), and since all correspond to
the same energy E, we can rewrite (6) in the form

N∑
ν=1

[
−βνV0(x) + V (x)

]
φν(x)Bν = 0. (7)

Multiplying (7) on the left by a conjugate function from our basis set and integrating
over the coordinates of the particles in the system, and making use of the potential-
weighted orthonormality relation (2), we obtain

N∑
ν=1

[∫
dxφ∗ν′ (x)V (x)φν (x)− 2Eδν′ ,ν

]
Bν = 0. (8)

We now introduce the definition

Tν′,ν ≡ −
1
p0

∫
dxφ∗ν′(x)V (x)φν (x), (9)

where p0 is related to the energy through equation (4). It can be shown that if V (x)
represents the potential of a system interacting through Coulomb forces, the matrix
Tν′,ν defined by (9) is independent of p0. Expressed in terms of this matrix, the
generalized Sturmian secular equation becomes

N∑
ν=1

[Tν′,ν − p0δν′,ν]Bν = 0. (10)

Equation (10) differs from the usual type of secular equation: we are not diagonalizing
a Hamiltonian matrix, and we can notice that the kinetic energy term has vanished
from (10). Furthermore, the roots are not energies but values of the parameter p0,
which is related to the energy through equation (4).
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2. N -electron atoms

We can illustrate the discussion given above by considering the case of an
N -electron atom, where the basis potential V0(x) is chosen to be the nuclear attraction
potential

V0(x) = −
N∑
j=1

Z

rj
. (11)

We now let µ stand for the set of quantum numbers {n, l,m, s}, and we let χµ(xj) be
a hydrogen-like spin-orbital

χµ(xj) = Rnl(rj)Ylm(θj ,φj)

{
α(j)
β(j)

(12)

with

Rnl(rj) =Nnl(2kµrj)le−kµrjF (l + 1− n | 2l + 2 | 2kµrj),

Nnl =
2k3/2
µ

(2l + 1)!

√
(l + n)!

n(n− l − 1)!
. (13)

The functions χµ(xj) are just the familiar hydrogen-like atomic spin-orbitals, except
that kµ has been left as an adjustable parameter instead of being set equal to Z/n.
In equation (13), F (a | b | z) is a confluent hypergeometric function. The functions
χµ(xj) defined by (12) and (13) satisfy the relationships[

−1
2

∆j +
1
2
k2
µ −

nkµ
rj

]
χµ(xj) = 0,∫

dτj
∣∣χµ(xj)

∣∣2 1
rj

=
kµ
n

, (14)∫
dτj
∣∣χµ(xj)

∣∣2 = 1.

If we construct a Slater determinant based on these functions

φν(x)≡ |χµχµ′χµ′′ . . . | ≡
1√
N !

∣∣∣∣∣∣∣∣∣
χµ(x1) χµ′(x1) χµ′′(x1) . . .

χµ(x2) χµ′(x2) χµ′′(x2) . . .
...

...
...

...
χµ(xN ) χµ′(xN ) χµ′′(xN ) . . .

∣∣∣∣∣∣∣∣∣ (15)

and if we impose the subsidiary conditions

k2
µ + k2

µ′ + k2
µ′′ + · · · = −2E ≡ p2

0,
nkµ = n′kµ′ = n′′kµ′′ = · · · = Zβν ≡ Qν ,

(16)
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then φν(x) will satisfy equation (1). This follows from (14) because[
−

N∑
j=1

1
2
∇2
j

]
φν (x) =

[
1
2
k2
µ −

nkµ
r1

+
1
2
k2
µ′ −

n′kµ′

r2
+ · · ·

]
φν(x)

=

[
−E − βνZ

r1
− βνZ

r2
− · · ·

]
φν(x)

=
[
−E + βνV0(x)

]
φν (x). (17)

It can also be shown [5–8,13] that, as a consequence of (14) and (16), the functions
φν(x) are automatically normalized in accordance with equation (2). It can be seen
that the generalized Sturmian method applied to atoms is a form of configuration
interaction, but with a special prescription for the construction of optimal configura-
tions. Each configuration is characterized by a set of one-electron quantum numbers,
ν = {µ,µ′,µ′′, . . .}, and by an effective nuclear charge, Qν = βνZ. The effective
charge is chosen by means of the subsidiary conditions (16) in such a way that all
the configurations are solutions to equation (1), and all correspond to the same value
of E. From the subsidiary conditions (16) it follows that

kµ
p0

=
1

n

√
1
n2 +

1
n′2

+
1
n′′2

+ · · ·
(18)

and that

− 1
p0

∫
dx φ∗ν′(x)V0(x)φν (x) = Zδν′,ν

√
1
n2 +

1
n′2

+
1
n′′2

+ · · ·, (19)

the sums in (18) and (19) being taken over all the principal quantum numbers in the
configuration ν.

3. Atoms in strong external fields

The generalized Sturmian method is especially well suited to calculations of the
effect of external fields on atoms, when the fields are so strong that perturbation theory
must fail. The Sturmian secular equation then takes on the form

∑
ν

[
Zδν′,ν

√
1
n2 +

1
n′2

+ · · ·+ T ′ν′,ν + T ′′ν′,ν − p0δν′,ν

]
Bν = 0, (20)

where

T ′ν′,ν = − 1
p0

∫
dx φ∗ν′(x)

N∑
i>j

N∑
j=1

1
rij
φν(x) (21)
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is the interelectron repulsion matrix, while T ′′ν′,ν represents the contribution of the
external field. For example, if an atom is subjected to an external electric field of
strength E in the direction of the z axis, then

T ′′ν′,ν = −ηMν′,ν , (22)

where

η ≡ E
p2

0

(23)

and

Mν′,ν ≡
∫

dx φ∗ν′(x)
N∑
j=1

p0zjφν(x). (24)

When a generalized Sturmian basis set of the form shown in (15) is used, and when
the subsidiary conditions (16) are imposed, then both T ′ν′,ν and Mν′,ν turn out to be
composed of numbers which are independent of p0. Thus we can proceed in the
following manner. Having evaluated T ′ν′,ν and Mν′,ν , we pick a value of η and a value
of Z. This gives us a spectrum of p0 values; and (23) may then be used to find the
value of E corresponding to each root. The diagonalization can then be repeated for
other values of η, and by interpolation, curves representing p0(E) and E(E) can be
constructed for the ground state of the atom and for the excited states. The induced
dipole moment of the ground state can also be calculated as a function of the field
strength E . Finally, the whole calculation can be repeated for other values of Z. The
heavy computational step in this procedure is not the repeated solution of the secular
equation, since this involves only the diagonalization of a matrix of moderate size.
The heavy step is the original calculation of T ′ν′,ν and Mν′,ν . In the construction of
these matrices, the generalized Slater–Condon rules [1,20–23] must be used. When we
take the matrix element of an operator between two configurations, we must remember
that they may be characterized by different values of the effective charge, Qν . Thus,
radial orthogonality cannot always be assumed between atomic orbitals belonging to
different configurations. However, T ′ν′,ν and Mν′,ν need never be recalculated; and
once constructed, these two matrices give us the behavior of the entire N -electron
isoelectronic series of atoms and ions for all values of the external field strength.

4. The 2-electron isoelectronic series and the 3-electron isoelectronic series

As an illustration of the methods discussed above we have applied them to cal-
culations on the 2-electron isoelectronic series, He, Li+, Be2+, B3+, C4+, . . . , and on
the 3-electron series, Li, Be+, B2+, C3+, . . . , subjected to external electric fields so
strong that perturbation theory could not be used.

If a strong external electric field is applied to an atom, a dipole moment is induced
in the ground state, and the spectrum of the excited states is altered. Finally, when
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Figure 1. This figure shows the spectrum of the ion O6+ as a function of the applied field. Only the states
with M = 0 are shown. Atomic units are used in this figure, that is to say the energy of the states of the
ion are measured in Hartrees, while the applied field is measured in Hartrees/electron-Bohr. As can be
seen in the figure an avoided crossing between the first excited state and the ground state occurs when
the applied field is 2.7 Hartrees/electron-Bohr. Until this value of the applied field, the polarizability
of the ground state is very nearly constant, but when the avoided crossing occurs the polarizability
increases sharply, and tunneling into the external potential well produced by the field becomes possible

(the preionization anomaly).

the field becomes sufficiently strong, electron tunneling can occur from the attractive
potential well of the nucleus into the large exterior potential well produced by the field.
Thus, a sufficiently strong external field can produce spontaneous ionization; and as
the ionization limit is approached, anomalies occur not only in the spectrum of the
atom or ion, but also in the polarizability and in the character of the ground state. For
the 2-electron isolectronic series, the induced polarization of the ground state increases
very nearly linearly with increasing field until the preionization anomaly occurs. In
other words, the polarizability of the 2-electron series is approximately constant up
to the point of the preionization anomaly. At that point, there is a sudden onset
of increasingly high polarizability, followed by ionization. The point at which the
anomaly occurs corresponds to an avoided crossing between the ground state and the
first excited state, as illustrated in figure 1, which was the result of a calculation using
45 configurations. It can be seen from the figure that avoided crossings of excited states
occur at considerably lower values of the applied field and thus when the first excited
state makes its avoided crossing with the ground state it already contains components
corresponding to high values of angular momentum. These give the post-crossing
ground state its suddenly increased polarizability. The new ground state is almost able
to tunnel into the external potential well.

The behavior of the 3-electron isoelectronic series is qualitatively different. In-
stead of being essentially constant up to the preionization anomaly, the polarizability



J. Avery, C. Coletti / Generalized Sturmians 49

Figure 2. This figure again shows the spectrum of O6+ as a function of the applied field. The figure
shows in detail the part of the spectrum shown in the upper left-hand corner of figure 1.

Table 1
Low-field polarizabilities of atoms and ions in the 2-electron and
3-electron isoelectronic series. The polarizabilities are expressed in

atomic units, i.e. (electron-Bohr)2/Hartree = (Bohr)3.

Z N = 2 N = 3

2 1.582011
3 0.198317 182.77610
4 0.051370 28.99684
5 0.018780 8.69635
6 0.008415 3.65967
7 0.004314 1.86972
8 0.002435 0.94998

of the 3-electron series first is large. The polarizability (i.e. the slope of the curve
showing induced dipole moment as a function of field strength) then diminishes for
intermediate values of field and finally increases sharply at the preionization anomaly.
This qualitative difference in behavior can be understood by considering the large en-
ergy gap between the ground state in the 2-electron series and the first excited states.
By contrast, the 3-electron series has available a 2P state near in energy to the ground
state which readily hybridizes with the ground state under the influence of the external
field. The availability of this 2P state accounts for the much larger initial polarizabil-
ity of the 3-electron isoelectronic series which can be seen in table 1. However, once
the nearby 2P state has been fully utilized, the system has no other nearby states of
higher angular momentum and thus the polarizability falls before increasing again at
the preionization anomaly. Figure 3 shows the induced dipole moment of O5+ as a
function of the external field. The line marked (a) in the figure shows the induced
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Figure 3. The curve marked (a) shows the induced dipole moment of O5+ as a function of the external
field. The polarizability of this 3-electron ion corresponds to the slope of the curve. Curve (a) was
calculated using 9 configurations, while for comparison curve (b) was calculated using only the config-
urations |χ1sχ1sχ2s| and |χ1sχ1sχ2p0 |. It can be seen from the figure that the initial polarizability is
due almost entirely to hybridization between these two configurations, which lie close together in energy.
At an applied field of 1.6 Hartrees/electron-Bohr a preionization anomaly occurs and the polarizability
increases sharply. This anomaly corresponds in the spectrum to an avoided crossing between the ground

state and the first excited state.

dipole moment calculated with nine configurations, while the line marked (b) was cal-
culated using only the configuration |χ1sχ1̄sχ2s| and the configuration |χ1sχ1̄sχ2p0 |.
It can be seen from the figure that the initial polarizability is due almost entirely to
the nearby 2P configuration.

In a future publication, we hope to use similar methods to study the behavior of
atoms and ions in very strong magnetic fields, and we hope also to be able to extend
the formalism to the study of time-dependent phenomena.
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